The Alcuin Number of a Graph and Its Connections to the Vertex Cover Number
نویسندگان
چکیده
We consider a planning problem that generalizes Alcuin’s river crossing problem to scenarios with arbitrary conflict graphs. This generalization leads to the so-called Alcuin number of the underlying conflict graph. We derive a variety of combinatorial, structural, algorithmical, and complexity theoretical results around the Alcuin number. Our technical main result is an NP-certificate for the Alcuin number. It turns out that the Alcuin number of a graph is closely related to the size of a minimum vertex cover in the graph, and we unravel several surprising connections between these two graph parameters. We provide hardness results and a fixed parameter tractability result for computing the Alcuin number. Furthermore we demonstrate that the Alcuin number of chordal graphs, bipartite graphs, and planar graphs is substantially easier to analyze than the Alcuin number of general graphs.
منابع مشابه
Bounding cochordal cover number of graphs via vertex stretching
It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...
متن کاملDetour Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard Graphs with the Wheel
A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path $P$ is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A detour monophonic graphoidal cover of a graph $G$ is a collection $psi_{dm}$ of detour monophonic paths in $G$ such that every vertex of $G$ is an internal vertex of at most on...
متن کاملThe upper domatic number of powers of graphs
Let $A$ and $B$ be two disjoint subsets of the vertex set $V$ of a graph $G$. The set $A$ is said to dominate $B$, denoted by $A rightarrow B$, if for every vertex $u in B$ there exists a vertex $v in A$ such that $uv in E(G)$. For any graph $G$, a partition $pi = {V_1,$ $V_2,$ $ldots,$ $V_p}$ of the vertex set $V$ is an textit{upper domatic partition} if $V_i rightarrow V_j$ or $V_j rightarrow...
متن کاملON THE EDGE COVER POLYNOMIAL OF CERTAIN GRAPHS
Let $G$ be a simple graph of order $n$ and size $m$.The edge covering of $G$ is a set of edges such that every vertex of $G$ is incident to at least one edge of the set. The edge cover polynomial of $G$ is the polynomial$E(G,x)=sum_{i=rho(G)}^{m} e(G,i) x^{i}$,where $e(G,i)$ is the number of edge coverings of $G$ of size $i$, and$rho(G)$ is the edge covering number of $G$. In this paper we stud...
متن کاملSome Results on Forgotten Topological Coindex
The forgotten topological coindex (also called Lanzhou index) is defined for a simple connected graph G as the sum of the terms du2+dv2 over all non-adjacent vertex pairs uv of G, where du denotes the degree of the vertex u in G. In this paper, we present some inequalit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Review
دوره 54 شماره
صفحات -
تاریخ انتشار 2010